12, 8. S. Kutateladze and A. 1. Leont'ev, Turbulent Boundary Layer of a Compressible Gas [in Russian}, Izd.
Sibirsk. Otd. Akad. Nauk SSSR, Novosibirsk (1962).

13. V. A. Shvab and V. A. Loshkarev, "Some questions of the investigation of ablative rupture of macro-
molecular heat shields," Fiz. Goreniya Vzryva, No. 6 (1973).

14. V. A. Loshkarev and G. G. Tivanov, "Investigation of some physicochemical processes in charred layers
of ablating heat-shield bodies," Fiz. Goreniya Vzryva, No. 1 (1975).

15. A. L Leont'ev, E. P. Volchkov, and E. G. Zaulichnyi, "Determination of the wear of wall material in a
turbulent boundary layer because of chemical erosion with additional injection of an inert inhomogeneous
gas through an entrainable surface under essential nonisothermy conditions," mzh.-Fiz. Zh., 17, No. 1
(1969). T

16. D. E. Nesler, "Heat transfer in a compressible turbulent boundary layer on a rough surface," Raketn.
Tekh. Kosmonavt., 9, No. 9 (1971).

17. A. Il Leont'ev and E. G. Zaulichnyi, "Determination of the relative heat-and mass-transfer coefficients
and the critical separation parameters for a turbulent boundary layer with inhomogeneous blowing under
nonisothermy conditions," Inzh.-Fiz. Zh., 19, No. 4 (1970).

18. Beck, "Numerical approximation of a convective boundary condition,® Teploperedacha, Ser. C., 84, No. 1
(1962).

ONE-DIMENSIONAL PULSATION OF A TOROIDAL GASEOUS
CAVITY IN A COMPRESSIBLE LIQUID

V. K. Kedrinskii UDC 532.5.013.2 +534.222.2

Let us discuss within the framework of the acoustic approximation the problem of the pulsation of a
toroidal cavity formed as a result of the explosion of a ring-shaped explosive charge on condition of the fulfill-
ment of the inequality @ >R, where a =const is the radius of the torus and R is the radius of the cavity. At the
same time the cross section of the toroidal cavity practically preserves the shape of a true circle, as the ex-
perimental data show, during a single pulsation period when a~ 10°R « and during a single half-period of pulsa-
tion when a = IOZR*. (R« is the radius of the charge). The problem of the pulsation of a gaseous torus in an
incompressible liquid has been discussed in [1]; however, it does not offer the possibility of evaluating such an
important parameter as the maximum radius of the expanding cavity, and consequently, the energy distribution
among the detonation products and the shock wave in the case of an explosion with axial symmetry.

The solution of the indicated problem is fraught with many difficulties, in particular, the complexity of the
solution of the wave equation. Therefore, it is necessary first of all to find a method of constructing an equa-
tion of one-dimensional pulsation which would permit simplifying the problem posed. Since an expression for
the velocity potential can be found for a number of spatial potential problems of an ideal incompressible liquid
in the case of specified assumptions, an attempt to use it for the transition to acoustic models is natural. The
practicability of this method is shown below in the example of the construction of the equation of one-dimen-
sional pulsation of bubbles.

§1. Let the velocity potentiéll in the case of an incompressible liquid have the form ¢ =& t)/fe). Then its
acoustic version can be represented as ¢ =& (t—r/cy /f(r). Since potential flow of a liquid u=-Vo is being
discussed, where u is the velocity of a fluid particle, then

u = Qf/f* 4 @'/eyf, (1.1

where the prime denotes a derivative with respect to ¢ =t—r /¢y The Cauchy— Lagrange integral with the
form of ¢ taken into account can be written as

D = flo + u?/2), (1.2)
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where w = [ dp/p, p is the pressure in the liquid, and p is its density. From (1.1) and (1.2) it is possible to find
an expression for ¢

O = flu — (o + u¥2)/e,Vf,.
Let us take the derivative of this expression with respect to t, and we obtain
"t Py — (01 wuy)ieV'f, (1.3)
On the basis of the continuity equations (acoustic version) and momentum conservation
U, -+ vulr = — (do/di)/c3, dwlor = — du'dt,
where v =0, 1, 2 are for the two-dimensional, cylindrical, or spherical cases, respectively, let us find expres-
sions for the partial derivatives u; and w¢ in (1.3). They are of the form

u; = duldt - vudlr ++ u(do/dt)/cs, ‘ (1.9
o, = do/dt + u(du/dt).

Substituting (1.4) into (1.3) and equating the expression obtained to .Eq. (1.2), we finally obtain
F (4 — 2ufe) dujdt < viud (1 — ufey — rf,i2vf)/r = of, + f(do/dt)(1 — uic, -~ u/c})/c,. (1.5)

In (1.5) it is possible to proceed to the cavity wall by setting r =R, u=dR /dt, and w = [p(R) —pw]/pﬁ, where
p(R) is the pressure in the cavity, p,, is the pressure at infinity, and p; is the density of the undisturbed liquid,
Thus we have for a two-dimensional cavity (v =0, f=1, f. =0)

(1 — 2 (dR/dt)/c,)d*R/de? = [1 — (dRIdE)/e, + (dR/dE)/ch] (dofdt)ey;

for a spherical cavity (v =2, f=4, fr =1)

R[4 — 2(dR/dt)lcg) d*R/dt* + (3/2)(dR/dt)* {1 — 4 (dRIdE)[3c,] =
= o + (Rle)(do/dt) [ 1 — (dRIdt)e, + (dR/dEY/cE);

and for a cylindrical cavity (v =1, and using the Rice— Ginell modification of the Kirkwood—Bethe approximation
(2], we set f = r'/2 and fy. = r~1/2/2)
R[4 — 2(dR/dt)/c,) d*R/dt* + (3/4)(dR/dt)* [1 — & (dR/dt/3c,) =
= ©/2 + (Ricg)(do/de) L — (dR/dt)lc, + (dR/dt)%/c3].

All three equations correspond exactly to the equations derived on the basis of the Kirkwood — Bethe approxima-
tion [2] for the acoustic case

(8/0t + c,8/0r) G = 0,
where G=r /2w +u?/2), which is also derived in the method expounded above.

The proposed method of finding the pulsation equation of a cavity is rather simple. However, it still can-
not be used in two-dimensional problems because of the fact that in this case the continuity equation does not
allow replacing partial derivatives of the velocity components by the total derivatives. Analysis of the method
has shown that it allows a simplification which reduces to the following. Let us assume that it is possible to
neglect in the continuity equation the term (dv/dt) /c{z), i.e., to assume that the relation among the velocity com-
ponents is determined essentially by the limits of an ideal incompressible liquid. At the same time, if a solu~
tion of the Laplace equation for the velocity potential is found and the boundary conditions affiliated with the
corresponding statement of the problem permit separation of variables, each velocity component is expressed
in terms of a total derivative of the cavity radius with respect to t.

One can show that the assumption made has an insignificant effect on the form of (1.5): The terms u/c,
and u?/c? affiliated with dw /dt on the right-hand side of this equation in parentheses disappear. But it is also
possible to neglect them within the framework of acoustics, since the main losses to radiation are determined,
in the case of the pulsation of a cavity in an incompressible liquid, by the term (R/cy (dw/dt). We will use the
results obtained to find the pulsation equation of a toroidal cavity in the acoustic approximation, and we will
compare the pulsation parameters calculated from it with experimental data.

§2. Let there occur in a liquid a toroidal cavity formed as the result of the "instantaneous" explosion of
a ring charge whose linear dimensions satisfy the inequality a >»>R. Then it is possible within the framework of
the ring-source approximation to write the following expression for the velocity potential:
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(P=—(a/2n)j‘cp(t—f/co)d“/fo | @.1)
[

where & =dS/dt; S=xR? isthe cross-sectionalarea of the torus, f=Vz2*+r*+ a*—2ar cos a inthe cylindrical
coordinate system (z, 1, a), and « is figured from anarbitrarily selected direction in the plane of the torus. Ac-
cording to Sec. 1, it would be possible to write out in explicit form an expression for & in the case of an in-
compressible liquid. 1t is not clear in this connection how to write the argument of the function & upon a
transition to the acoustic model. Therefore, let us preserve the expression for the velocity potential in the
form (2.1), having stipulated that it is possible to remove the function ¢':from under the integral sign. This
-assumption is not essential to the construction of the pulsation. equation of a cavity and can have an effect only
in the evaluation of the fine structure of a shock wave in the zone next to the charge.

By analogy with what has been stated above it is possible to write

— @nla)(® + V¥/2) / (j da/f), 2.2)

n n .
(2t gy oy 0V (2 Teg,
=) T 7

" (jda/f) d

where u, v, and V are the components and the total velocity of a fluid particle. Let us take the partial derivative
of the second equation in (2.2) with respect to t. Then, removing &' from under the integral sign, we obtain

I

H}_

a®d’
27

1, o,

dot = u; + vy —

VT/t j fr - ’ a"a-
U

o ’f—da/f)

It can be shown tfxat w¢=dw/dt +VdV /dt. The partial derivatives ut and vt will be found from the solution

Oy

P

for an incompressible liquid. At the same time, using the expression ¢ = — (a/2n) ® S' da/f, for the velocity
potential, we finally obtain
n a
uy = du/dt — (a/2m) @ {u (Gt = 2848 da 40 § (Fral > — 20,1017 da},
0 0
(2.3)
v, = dvldt — (a/2m) cb{ {Frlf? = 20,11 da v S (fosl* — 2f2/f3)da}
Substituting the expressions for w¢, u;, and v obtained in (2.3) and expressing &' from the first Eq. (2.2),
we obtain

(1 — 2Fw)du/dt + (1 — 2F w)dv/dt — (w/a)(Fo/F)(u® 4+ v¥) +
+ (a/2n)DF Fu? 4+ (a/2n)DF Fv* 4 (a/n)DFF uv — (a/22)D(F, +
+ Fou — (a/2n)D(F; + F oo = (2n/a)(Fo/F)o + F,doldL, I (2.4)

where
= (@20) [ 72 (G, + £ da; = [ dalfs
B 0_ ’ )
Fy=(coFy" § F+ f)da; Py = OX F2 (Frr — 2£24f)dets

o Ed
= (2= 2f4f) da; F, = 0§ P (e — 241,01 da;
0
‘® = 2nR (dR/dt).

In final form the functions F are written in the following way:
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= a A== =1 PNk k] ~ 2Kk
FO‘ani”‘:i+(r+a)2[ 32 4 (r— a)® B+ K®| F Vm’
_aVFEF(r—ap 2r—a—(r—:z)? ] . T far
Fy= 4reoK (k) [1 + Vi + (r+apliz* + (r—a)? J’ * V:Z T (r e
Foe — 3K (k) 3(z2 o) —1r? E (k) _
L 22 Y 2 r +a)f r* [ (r—a?} Vs +(r+a)

22 L a2 . p3Y 2 {r = a) 2 2
e S e (G ) B () — (5 4~ K (),
_ 2E (k) o 22V~ (r ~a) (4 (22
CE i VET ey FTU— g HE e wE
TP+ ER) -2+ -1 KR}, F,=
3:E (k) 2@+ V2 (rTap (42> +r2 4+

TR r—a | VES e ap | T — el = (o a)t P

+ @) E(R) — 12+ (r— a1 K (b)),

Fy

where K(k) and E(k) are the complete elliptic integrals of the first'and second kinds, respectively, andk is their
modulus, Proceeding to the wall of the torus, we obtain from (2.4) after a number of rearrangements in the
expressions for the coefficients F the pulsation equation of a toroidal gaseous cavity in a compressible liquid
{11 — 2n(dR/ds)/coIn{8a/R)|RA*R/dt* +
~ [ — n(dR/dt) c,In(8a/R)I(dR!dt)*In(8a/R) — (dR’d1)22 =
= @ -+ a{Ric,)(dw/dt). (2.5)
On the basis of Eq. (2.5) a calculation has been carried out of the pulsation parameters of the toroidal

cavity formed as the result of the explosion of an explosive ring (the explosive is hexogen, the density of the
charge is p, =1.55 kg/cm?, the detonation rate is D=7.7 km/sec, and the charge diameter is d =0.65 mm).
Since the experimental investigations with which the calculated data are compared below were performed with
charges having a copper shell and the finiteness of the detonation rate had practically no effect on the shape of
the cavity, the initial parameters of the problem were determined from the decay condition of an arbitrary ex-
plosion in the case of "instantaneous" detonation, and the data of [3] were used for the isentropic index.

The results of the calculation are given in Table 1, where ay=a/Rx, y3 =R} /Ry, y2 =R1/R«, R} and R
are the maximum and minimum radii of the cavity at the instants of the first expansion and the first collapse,
respectively; t? is the time of expansion out to R?I_ (one half of the first pulsation period); E is the fraction of the
energy remaining in the detonation products after the first expansion of the cavity; and « 6= « corresponds to an
infinite cylindrical charge.

It is possible on the basis of the calculational and experimental results presented in Table 1 to note the
following:

a) as the radius of the ring charge increases, the values of the pulsation parameters y‘l and y?, which
characterize the energy balance of the explosion, asymptotically approach the corresponding values of the
parameters of an explosion with cylindrical symmetry;

b) the calculated data agree satisfactorily with the experimental data for a >3- 10%

¢) the ring geometry of the charge has a significant effect on the pulsation period of a cavity with detona-
tion products: Even at a ring charge radius of ¢ =10 m (data under No. 6 in Table 1) the pulsation period of the

TABLE 1
Calculation Experiment
No, @ W% I v 28 PR I
| sec/cm sec/em
1 1,54 2 125,83 | 4.02 0,21 - 103 0.2 11,8
2 3.08.107 127.8 3.82 0,24 119,35 0.237 15.9
3 4,60- 102 128.8 3,72 0.256 1236 0,256 17,0
4 1,54.10% 131,35 3,48 0,3 — — —
5 08403 132.8 3,37 0,323 -— — —
6 3,08.10* 136.4 3,09 0,394 — — —
7 b 109 | 515 02 133 0.2 22
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torus exceeds by practically a factor of two its value for a cylindrical explosion; the experimental results con-
firm the tendency toward an increase of the pulsation period upon an increase in the radius of the ring; and

d) according to the experimental data, as the radius of the ring decreases (with fulfiliment of the condition
of maintaining the toroidal nature of the cavity), the fraction of energy necessary for the shock wave increases
and amounts to practically 90% for a value a ;~150; as the radius of the ring increases, the energy balance ap-
proaches the data for an explosion with cylindrical symmetry.

The results presented for our investigations confirm the practicability of the method proposed in this
paper and the pulsation equation (2.5) obtained on this basis for a toroidal cavity in a compressible liquid.

The author is grateful to V. T. Kuzavov for.assistance in conducting the experiments.
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SHOCK STRUCTURE IN A LIQUID CONTAINING GAS
BUBBLES WITH NONSTEADY INTERPHASE HEAT TRANSFER

R. R. Aidagulov, N. S. Khabeev, UDC 532.529.5:533.6.011.72
and V. Sh, Shagapov

In this article the one-velocity, two-pressure model of a two-phase mixture [1] is used in conjunction with
the heat-conduction equation for the interior of bubbles in a bubble -liquid mixture to describe the structure of
a shock wave in such a mixture.

Shock waves in a liquid containing gas bubbles have been investigated theoretically and experimentally
[1-4]. The structure of a shock wave in such a medium has been studied with allowance for the compressibility
of the host phase as well as two-~velocity and two-temperature effects [5], and it has been shown in the same
work that in the case of thermal nonequilibrium the role of two-velocity effects becomes inconsequential against
the background of the much stronger thermal dissipation. In this connection the present discussion is framed
in the one-velocity model for simplification {6]. The objective of the present study is to refine the results of
[6] and to test the applicability of the fixed heat-transfer coefficient or Nusselt number determined from the
approximation of a thin thermal boundary layer to the case of nonsteady heat transfer between a pulsating bubble
and the host liquid.

§1. Fundamental Equations

We consider the motion of a liquid in which gas bubbles are suspended and for which the following basic
assumptions arc made [1}: 1) The distances over which the flow parameters experience any appreciable varia-
tion are much greater than the distances between bubbles, and the latter distances in turn are much greater
than the bubbles themselves (i.e., the contents by volume « , of the gas phase are small, o 5,< 0.1); 2) the mixture
is monodisperse, i.e., in every elementary volume all the bubbles are spherical and have the same radius R;

3) viscosity and heat conduction are essential only in interphase processes and, in particular, during bubble
pulsations.
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